開講学科	生物	物工学科		前橋工科大学		・シラバ	シラバス	
				標準対象年次	選択/必修	科目	科目コード	
科目名	分	析化学		1 年次	必修	170	17000801	
		名康栄		単位数	学 期	曜 日	時 限	
担当教員	浜			2 単位	後期	水曜日	5 時限	
授業の教育		分析化学では、無機化合物、有機化合物、生体高分子物質などの分離						
┃目的·目標 ┃		定量的な分析を可能にする分離・分析法の原理と手法について学びます。分析対象となる化学物 質の構造と反応性を理解しつつ、分析数値を化学量論的に解析できることも目的とする。						
世紀の世辺. 数								
目標との関係		本授業は定性・定量的な化学分析の学習が中心ですが、生物工学科では生体構成成分の構造と機						
日原での内所		法や食品・医薬品の成分分析の基礎的原理と技術についても学ぶ。電気化学や光学の領域とも関						
		係します。分析機器を用いる分析技法は高学年次開講の「機器分析」の授業で再度学習します。						
キーワード		定性分析、定量(重量および容量)分析、沈殿滴定、酸塩基滴定、酸化還元滴定、キレート滴定、						
		pH 測定、電気化学分析、吸光分析、クロマトグラフィー、電気泳動、遠心分離						
授業の概要		分析化学領域での記号、単位、濃度表示、および分析値に関する有効数値、標準偏差、相関係数						
		の確認。分析化学実験に必須の水の精製法では脱塩、逆浸透、蒸留の解説。水素イオン濃度指数						
		pH 測定と緩衝溶液の議論。無機分析としての金属陽イオン系統分析の紹介。容量分析である沈殿						
		滴定、酸塩基滴定、酸化還元滴定、キレート滴定から沈殿形成、中和反応、酸化還元反応、錯体						
	形成の理解。浴真の濃度を溶液の吸光度より測定する分光吸光度分析法の原理と 器分析。生体成分の分離・分析に必要な各種のクロマトグラフィー法と電気泳動							
	生体高分子の遠心分離法の解説。							
 授業の計画		第1回:	分析化学における記号、	単位と換算、密原	- 度と比重、分率	と濃度表示と	 活量	
	ľ	第2回:	水の精製法。イオン交換	法(脱塩) と逆浸透	透法と蒸留法。	電気伝導度測	定による純度	
	ľ	第3回:	水素イオン濃度と緩衝溶	液。 ガラス電極	による水素イス	ナン濃度指数p	H 測定	
		第4回:	無機定性・定量分析法。	金属陽イオンの	D系統分析。イ	オン電極の種	類	
		第5回:	定量(容量)分析法(1) 落			と再結晶と抽出	1	
		第6回:	(2) 電位差(pH) 測					
		第7回:	(3) 電位差(酸化				资素計	
		第8回:				化合物)		
		第9回 : 第10 回 :	電磁波(光)を用いる機器 分光吸光度分析法。 La			5淮州始 / 	.台)	
		第11回:		動法、界面移動法				
		第12回:	ガスクロマトグラフィー					
		第13回:	液体クロマトグラフィー					
		第14回:	遠心分離法。 移動界面	遠心法とゾーン	遠心法。遠心効	果(xg)と沈降	係数S値	
	ľ	第15回:	定量(重量・容量)分析で	の測定値の有効数	效字、標準偏差	、相関係数(晶	是小二乗法)	
受講条件 •		受講条件:「物理学 I」、「化学 I」、「生物学 I」の履修。(分析対象や分析技法が広範囲なため)						
関連科目		関連科目:「機器分析」						
授業方法		各回の講義時に印刷資料を配布し、これを参考に講義します。欠席すると講義資料を受領できな						
-+ + ++	· 	くなるので注意。授業計画における講義項目の順番は変動する場合もあります。						
テキスト・参考 	昔	配布資料はファイルし毎回持参して下さい。テキストは使用しない。 参考書: 「絶対わかる分析化学」斉藤・坂本著(講談社)						
		参考書: 「絶対わかる分析化字」斉藤・坂本者(講談社) 試験(80%)・レポート(20%)で総合評価。						
			【(00%)・レバート(20%)(総合計画。 【される学年・学期が前後する「化学 I・II」、「物理学 I・II」、「物理化学」で使用するテキ					
│履修上の注意 │)「化字 I・II」、「物理字 I・II」、「物理化字」(使用するテキー して下さい。「基礎生物工学実験 I・II」には分析化学実験が含し				
		ストーの方がに子宮建境日も活用して下さい。「 金 碇工物工子夫級 1・11」には方がに子夫級が各 まれていますので合わせて学習のこと。						
		51000	ノン・ロットに、「子日のこと	O				